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Industrial values
Examples of successes
• Metal alloys

• Batteries

• Composite materials

• Fluids

Challenges
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Industrial Value
Creation of products which are:

Valuable for customer
Innovative
Cost-effective to manufacture
Safe and reliable
Environmentally responsible
Meeting regulations
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Value of Modeling and Simulation

4

Component 
Design

Materials 
Design

System
Design Operation

P R O P E R T I E S

Production

Optimal design and processingUnderstanding of mechanisms
Prediction of properties
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Innovation Process

5

Improvement of industrial products is a long-term iterative process
Materials modeling and simulation are catalysts of this process 
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Safety of Nuclear Reactors
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Nuclear Energy and Coal
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U → I, Cs, Sr, Xe, Ba, …   E ≈ 2×1010 kJ/mol
C + O2 → CO2               fH0 = 3.935×102 kJ/mol

(ash from coal is radioactive)

Our atmosphere is thin and vulnerable
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Safety of Nuclear Reactors

Reliability of structural 
materials
• Channel distortion
Accident tolerant fuels
Managing radioactive 
waste
Alternative designs
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Radiation-induced Swelling
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Hexagonal close-
packed



Diffusion of Interstitials in Zr

Fast

Anisotropic: faster in xy-direction

Build-up of <a> dislocation loops

1 ns molecular dynamics

x

z
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MedeA® LAMMPS/EAM

Slope of mean 
square displacement 
vs. time is 
proportional to 
diffusion coefficient
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Nucleation of Dislocation Loops
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MedeA®-LAMMPS/EAM 

Nanoclusters of 
interstitial atoms 
cause 
expansion in <a>
shrinkage in <c>

Consistent with 
experimental data on 
radiation-induced 
growth

1 nm
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Effect of Alloying with Nb and Sn
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Nb
suppresses 
interstitial 
diffusion

MedeA®-LAMMPS/EAM 

Zr 2.5Sn 

Pure Zr 

Zr 2.5Nb 
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Accident Tolerant Fuel Systems

The explosion was caused by a chemical reaction of Zr with water
Consequence: Cladding of Zr or replacement of Zr by other materials
• Ni-free steel
• SiC
• Other
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Fukushima Daiichi Reactor 12 March 2011   

Zr + H2O → ZrO2 + H2 + heat
H2 + ½ O2 → H2O + heat
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Batteries
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Li-Ion Battery
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Issues

Limited capacity: LixCoO2 is unstable if more than half 
of Li is removed. Practical operation is restricted to   
0.5 ≤ x ≤ 1; half of the capacity is not used.
LixCoO2 expands when Li is removed and contracts 
when Li is inserted → degradation
The liquid electrolyte is flammable
Each cell behaves differently, which is a serious issue 
in battery packs
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Low-strain Cathode Materials
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International Battery Association (IBA) Conference, Brisbane, Australia, 3-7 March 2014
Patent WO 2014/191018 A1 
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Computations
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Using ab initio methods, compute equilibrium volume of spinel structures and 
identify those compounds which shrink and which expand when Li is removed

Find compounds close to zero expansion when Li atoms are inserted

AlCu,Ni,Co,Fe,Mn,Cr,V,Mg,M,O)M,M,Li(M 4
3
z

2
y

1
x 
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Patent
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Composite materials
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How much primer (coupling between SiO2 surface and polymer) is optimal?

Epoxy-Oxide Interfacial Systems
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SiO2
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Epoxy-SiO2 Interfaces – Model Building
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Primed SiO2+ unreacted epoxy, crosslinking and equilibration
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Epoxy-SiO2 Interfaces – Mechanical Properties
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Stiffness coefficient C33 for SiO2 - epoxy composite layer systems with 
various levels of primer coverage:

Intermediate primer coverage produces optimal enhancement in 
small strain mechanical behavior.

Primed surface sites (%) C33 (GPa)

0 7.2

12.5 7.8

25 8.8

50 5.0

Reference: Bulk Cured Resin 5.97 +/-0.29
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Fluids
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Predicting Boiling Point Temperature
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~100 compounds 
Average absolute error of the Tb
calculated by Gibbs-ensemble 
Monte Carlo simulation from the 
DIPPR [1] data, is 1.4%. 
More than half of the compounds 
have an absolute deviation of the 
Tb below 1.0%. 

MedeA®-GIBBS simulations (AUA & TraPPE-UA FF) by  
M. Yiannourakou and P. Ungerer 

1. Wilding WV, Rowley RL, Oscarson JL. Dippr project 801 
evaluated process design data. Fluid Phase Equilib. 
1998;150–151:413–420



Viscosity of Diesel Fuel
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Industrial question: What is the viscosity of a Diesel fuel 
at high pressure and temperature (fuel injection)
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Scientific Challenges
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More configurations, longer time scales

ab initio

Cluster 
Expansion

continuum 
models

Forcefields

Engineering

Mesoscopic 
methods

Thermodynamic and 
kinetic methods

Greater complexity, higher accuracy



Practical Challenges

What can be easily computed is usually industrially not 
important, and what is industrially important is not easy to 
compute
We need translators: industrial problems ↔ simulations
We need simulation software
• Applicable to variety of complex systems
• Validated
• Easy to use
• Interoperable
• Well supported - over many decades
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European Materials Modelling Council 
www.emmc.info



Conclusions

Atomic-scale modeling and simulations are becoming an integral part of 
industrial R&D

Value
• Understanding mechanisms
• Prediction of properties

Examples
• Zr alloys
• Batteries 
• Composites
• Fluids

Need higher accuracy and better coupling in multi-scale models: 
theoretical approaches, algorithms, software
Highly skilled scientists and engineers
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Innovation
Better products & processes 
Higher efficiency


