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Some	background

• I	am	a	professor	at	the	University	of	Liège,	where	I	lead	a	team	
of	about	15	people	at	the	intersection	of	applied	mathematics,	
scientific	computing	and	engineering	physics

• Our	research	interests:	modeling,	 analysis,	algorithm	
development,	 and	simulation	for	problems	arising	in	various	
areas	of	engineering	and	science

• Currently:	 electromagnetics,	 biomedical	 problems,	geophysics
• Innocent	is	a	former	PhD	student,	currently	post-doc	at	

Columbia	University
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Some	background

• We	write	quite	a	lot	of	codes,	mostly	partial	differential	
equation	solvers

• Free	and	open	source	software:
• Gmsh:	mesh	generator	with	built-in	CAD	engine	and	post-processor	
(http://gmsh.info)

• GetDP:	general	finite	element	solver	using	mixed	finite	elements	
(http://getdp.info)

• Combined	through	ONELAB	(http://onelab.info):	
lightweight	interface
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Some	background

Today,	Gmsh,	GetDP and	ONELAB	represent
• about	half	a	million	lines	of	(mostly	C++)	code
• 3	core	developers,	 about	100	with	>=	1	commit
• about	1,000	people	on	mailing	lists
• about	10,000	downloads	per	month
• About	500	citations	per	year	– the	Gmsh paper	alone	is	cited	

about	3,000	times
• Gmsh probably	one	of	the	most	popular	open	source	finite	

element	mesh	generator	in	the	world



A	flavour of	our	recent	work	on	
multiscale models	and	methods
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Brute-force	discretization…

6

… of	the	underlying	partial	differential	equations,	in	space	and	time

12 E. MARCHANDISE

Geometry STL Surface mesh Volume mesh Time (s) Time (s) Time (s)
# �̄T # �̄T # �min

⌧ �̄⌧ C field 2D mesh 3D mesh
Aorta 4 103 0.73 12 103 0.97 58 103 0.21 0.69 0.08 0.78 2.26
Aneurysm 38 103 0.94 27 103 0.97 104 103 0.19 0.65 3.30 3.60 4.20
Airways 493 103 0.87 168 103 0.93 587 103 0.06 0.68 410.10 25.90 35.11

Table I. Mean and minimum quality (�̄T , �̄⌧ , and �min
⌧ ), number of mesh elements # and timings (in s) for

the generation of isotropic tetrahedral meshes starting from tubular geometries.

Figure 8 shows the generated isotropic tetrahedral mesh for the lung based on the centerline field.
As can be seen, the mesh size is a function of the vessel radius, reducing therefore considerably the
total number of mesh elements compared with a uniform tetrahedral mesh.

(a) (b)

Figure 8. Isotropic tetrahedral mesh of the airways created using the centerline operators. The colors
correspond to the different mesh patches that have been created by the cut operator.

3.2. Mixed hexahedral/tetrahedral/pyramidal computational meshes

We first define a quality measure for quadrilateral elements. Consider a quadrilateral element q
and its the four internal angles ↵k, k = 1, 2, 3, 4. We define the quality ⌘q as:

⌘q = max
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This quality measure is ⌘ = 1 if the element is a perfect quadrilateral and is ⌘ = 0 if one of those
angles is either  0 or � ⇡. For the hexahedral mesh elements, we define the equi-skew angle mesh
quality ⇣H as a normalized measure of skewness ranging from ⇣H = 1 (best) to ⇣H = 0 (worst) that
depends on the angle formed between the faces’s edges of each cell in the mesh (⇣H = 1 corresponds
to a perfectly equiangular hexahedra) [7]:

⇣H = 1�max


✓max � 90

90
,
90� ✓min

90

�
, (15)

where ✓max and ✓min are the largest and smallest angle in the hexahedra.
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Fig. 1. Mesh used for the numerical experiments [20]: a) full head (300,000 nodes, 27 tissues), b) grey matter, c) white matter.

matter �G(!) are modeled within a probabilistic framework,
as functions of the random variable !. Therefore jAvg , jmax,
j99�perc, eAvg , emax and e99�perc are random as well. In
particular, by using the maximum entropy principle [22] we
model (arbitrarily) �G(!) and �W (!) as independent random
variables, uniformly distributed:

�G(!) ⇠ U([0.0753 ; 0.5155]) (S/m) (1)
�W (!) ⇠ U([0.0533 ; 0.3020]) (S/m) (2)

C. The non intrusive approach

As the conductivities of the brain and the cerebellum are
two independent random variables of finite variance, we can
expand them as a truncated series of order pin in the bi-
dimensional Hermite polynomials of a random gaussian vector
⇠(!) = (⇠1(!), ⇠2(!)), known as Hermite chaos polynomials

[18]:

�G(!) ⇡
PinX

i=0

�Gi i(⇠(!)) (3)

�W (!) ⇡
PinX

i=0

�Wi i(⇠(!)) (4)

where �Gi and �Wi are scalar values that depend on the
probabilistic law of the conductivities, Pin = Cpin

2+pin
is the

number of bi-dimensional polynomials of order less than pin,
and  i is the ith bi-dimensional Hermite polynomial. To
solve the stochastic problem, we use an approach based on
a polynomial chaos decomposition of both the conductivity
and the induced fields [18]. We assume the conductivities to
be of finite variance, with no assumption on the shape of the
probabilistic distribution.

The values of the induced fields—the average current
density in the brain jAvg(!) = jAvg(⇠(!))—are computed
by the finite element method from any couple of values
(�G(⇠(!)),�W (⇠(!))). The average density belongs to a
space that can be spanned by the polynomials  (⇠(!)) and
thus written as a truncated series to an order pout:

jAvg(!) =
PoutX

m=0

jAvgm m(⇠(!)). (5)

To compute the value of the unknown real coefficients jAvgm,
we use the orthogonality properties of the Hermite polynomi-
als:

jAvgm =
E[jAvg(!) m(⇠(!))]

E[ m(⇠(!))2]
, (6)

where E[·] is the mathematical expectation. The denominator
can be computed analytically. The integral in the numerator
is computed by means of a Hermite Gauss integration scheme
with d integration points [18]:

E[jAvg(!) m(⇠(!))] ⇡
dX

i=1

...
dX

j=1

wi,j(jAvg((t1, t2)i,j)) m((t1, t2)i,j), (7)

with (t1, t2)i,j the i, j-th Gauss point and wi,j the associated
weight in the bi-dimensional Cartesian rule. The deterministic
problem must thus be computed d2 times, with the conductiv-
ity evaluated through (3) and (⇠1(!), ⇠2(!)) = (t1,= t2)i,j ,
i, j = 1, . . . , d.

III. RESULTS AND DISCUSSION

The non intrusive method is governed by three parame-
ters: pin, pout and d; pin is linked to the precision on the
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Figure 3: Di↵erent views of the geometry of a 100 neurons network.

the distance to the closest entity. The mesh size field h(x, y, z) is computed as follows:

h(x, y, z) =

8>>>><
>>>>:

hclose if d(x, y, z)  dclose

hclose +
d f ar�d(x,y,z)
d f ar�dclose

(h f ar � hclose) if dclose < d(x, y, z) < dclose

h f ar if d(x, y, z) � d f ar

. (1)

Here, hclose < h f ar are two mesh sizes: mesh size at a distance to the lines smaller that dclose is hclose, mesh
size at a distance to the lines larger that d f ar is h f ar and mesh size is linear in between.

2.4. Boundary conformity for 1D models

The main di�culty in generating meshes on the nonstandard 1D model is boundary conformity, as some
of the embedded lines inevitably end up being very close to each orther. Two strategies can be envisaged to
ensure such a conformity. The first one is to ensure a priori Delaunay conformity. This can be done using
the notion of protecting balls [4]. It is indeed possible to saturate the 1D model edges in such a way that,
for every 1D mesh edge xy , the sphere centered at mid-edge (x + y)/2 and of radius r = |x � y|/2 equal to
half of edge length is empty i.e. does not contain any point of the boundary. Protecting balls have to be
used in the Delaunay refinement process as well in order not to remove some edges of the boundary during
the refinement. Another possible choice is to use a constrained Delaunay approach [5]. Here, an initial



7

Focus	today:	multiscalemagnetoquasistatics

Introduction Multiscale modeling Hysteresis models Conclusions and perspectives

2. Motivation: materials are naturally multiscale

Low frequency electromagnetism
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Hierarchy of multis
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for magnetoquasistatic
problems

continua

coarse grains

mag. domains

atoms

10�110�610�9

10�6

1

10�3

10�9

time scale (s)

length scale (m)

10�3

laminations

mesoscale

6 Innocent Niyonzima1 and Christophe Geuzaine2 INDUSTRY-ACADEMIA DAY - MATERIAL MODELING
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Typical	engineering	application

Motivation: complexity of numerical models of magnetic materials

Why use the finite element method to solve electromagnetic problems?

1. Nonlinear magnetic material law b = B(h) / h = H(b)
2. Complex and multiscale computational domains

Dynamic	modelling	 and	optimization	of	industrial-complexity	
electromagnetic	 energy	conversion	system

Coil
windings

Steel	lamination	
stacks	or	soft	

magnetic	composites

Introduction Multiscale modeling Hysteresis models Conclusions and perspectives

2. Motivation : use of composite materials in electromagnetic energy converters

Composite magnetic materials are used in electrical energy converters to reduce eddy current
losses

Stack of laminations soft magnetic composites

Complexity of multiscale models 300 laminations + 299 insulators:
• 22 (lamination) + 3 (insulator) elements ! 7,500

elements over the thickness

• 1000 ⇥ 1000 elements along the other 2 directions
! 7,500,000,000 elements i.e. a few billions of
d.o.f.

The resolution of the linear system is computationally
expensive ! multiscale methods

7 Innocent Niyonzima1 and Christophe Geuzaine2 INDUSTRY-ACADEMIA DAY - MATERIAL MODELING
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Goal

Improve	performance/increase	 energy	 conversion	efficiency
• Requires	 accurate,	high-fidelity	 simulations
• Current	conversion	efficiency	is	already	around	90%
• Improving	by	5%	is	a	tremendous	challenge

• Brute-force	simulation	of	a	simple	300	sheet	lamination	stack
• 25	discretization	points	per	lamination	(sheet	+	insulation)
• 1000	x	1000	points	in	transverse	direction
• … leads	to	7.5	billion	DoF nonlinear,	hysteretic	system

Introduction Multiscale modeling Hysteresis models Conclusions and perspectives

2. Motivation : use of composite materials in electromagnetic energy converters

Composite magnetic materials are used in electrical energy converters to reduce eddy current
losses

Stack of laminations soft magnetic composites

Complexity of multiscale models 300 laminations + 299 insulators:
• 22 (lamination) + 3 (insulator) elements ! 7,500

elements over the thickness

• 1000 ⇥ 1000 elements along the other 2 directions
! 7,500,000,000 elements i.e. a few billions of
d.o.f.

The resolution of the linear system is computationally
expensive ! multiscale methods
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Multiscalemagnetoquasistatics

• Brute-force	approach	is	computationally	 untractable for	design	
or	optimization
• Simulation	on	a	laptop	~	1	million	DoFs
• Simulations	on	HPC	clusters	~	1	billion	DoFs

• Reduce	the	cost	with	two-scale	computational	homogenization
• Continuum	models	(magnetoquasistatics,	i.e.	Maxwell	system	
without	displacement	currents)	on	both	coarse	and	fine	scales

• Thermodynamic	hysteresis	model	for	anything	below

Introduction Multiscale modeling Hysteresis models Conclusions and perspectives

2. Motivation : use of composite materials in electromagnetic energy converters

Composite magnetic materials are used in electrical energy converters to reduce eddy current
losses

Stack of laminations soft magnetic composites

Complexity of multiscale models 300 laminations + 299 insulators:
• 22 (lamination) + 3 (insulator) elements ! 7,500

elements over the thickness

• 1000 ⇥ 1000 elements along the other 2 directions
! 7,500,000,000 elements i.e. a few billions of
d.o.f.

The resolution of the linear system is computationally
expensive ! multiscale methods
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Wish	list

• Homogenized	 problem	that	is	easy	to	solve
• Macroscale solution	that	represents	 the	average	behavior
• Possibility	to	handle
• Nonlinear,	irreversible	material	behavior
• Complex	microstructureswith	stochastic	distribution	of	
heterogeneities

• Possibility	to	recover	local	fields	around	points	of	interest
• Accurate	computation	of	global	(engineering)	 quantities
• Eddy	current	losses
• Magnetic	losses
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Multiscalemodelling:	a	bit	of	historyMultiscale modeling : history

I Homogenization theories
I 1892: Classical mixing rules (Rayleigh - Maxwell - Garnett)
I 1969: G-convergence (Spagnolo)
I 1975: �-convergence (De Giorgio)
I 1978: Asymptotic expansion method (Bensoussan -

Papanicolaou - Lions - Palencia)
I 1979: Stochastic homogenization (Kozlov - Papanicolaou -

Varadhan)
I 1984: H-convergence (Tartar)
I 1989: Two-scale convergence (Nguetseng - Allaire)
I 2002: Periodic unfolding method (Cioranescu)

I Multiscale methods
I 1965: Mean-field homogenization – MFH (Hill)
I 1994: FFT-based homogenization (Moulinec – Suquet)
I 1997: Multiscale Finite Element Method – MsFEM (Hou)
I 1998: Variational Multiscale Method – VMS (Hughes)
I 2003: Heterogeneous Multiscale Method – HMM (E)

Introduction Multiscale modeling Hysteresis models Conclusions and perspectives

Multiscale modeling: The Finite Element Heterogeneous Multiscale Method (FE–HMM)

Heterogeneous Multiscale Method (HMM)

1 Derivation of the governing PDEs using the homogenization theory
2 Development of weak multiscale formulations (b- and h-conforming formulations)
3 Numerical resolution of the homogenized problem

11 Innocent Niyonzima1 and Christophe Geuzaine2 INDUSTRY-ACADEMIA DAY - MATERIAL MODELING
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Heterogeneous	MultiscaleMethod	(HMM)

Introduction Multiscale modeling Hysteresis models Conclusions and perspectives

Multiscale modeling: The Finite Element Heterogeneous Multiscale Method (FE–HMM)

Heterogeneous Multiscale Method (HMM)

1 Derivation of the governing PDEs using the homogenization theory
2 Development of weak multiscale formulations (b- and h-conforming formulations)
3 Numerical resolution of the homogenized problem
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HMM:	convergence	of	fields1. Governing PDEs: convergence of fields

Use classical and two-scale convergence theories to derive the homogenized
problem ! fields belong to appropriate function spaces

Convergence of electromagnetic fields:

h" *
2

hm = hM + grady �c in L2(R3 ⇥ Y),

b" *
2

bm = bM + curly ac in L2(R3 ⇥ Y),

h" * hM in L2(R3),

b" * bM in L2(R3).

Convergence of fields involving di↵erential operators:

curl h" *
2
curlx hM + curly hc in L2(R3 ⇥ Y),

div b" *
2
divx bM + divy bc in L2(R3 ⇥ Y),

curl h" * curlx hM in L2(R3),

div b" * divx bM in L2(R3).
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HMM:	derivation	of	MQS	equations
1. Governing PDEs: derivation of the homogenized MQS problem

Multiscale problem
curl h" = j ",
curl e" = �@tb",

div b" = 0,

h" = H(b"),

j " = � e".

Mesoscale problem derived using the two-scale convergence theory
(macroscale sources)

curl hm = jm,
curlx eM + curly ec = �@tbm,

divx bM + divy bc = 0,

hm = H(bM + bc),

jm = �(eM + ec).

Macroscale problem derived using the classical convergence theory
(upscaled material law)

curl hM = jM ,

curlx eM = �@tbM ,

divx bM = 0,

hM = HM(bM + bc),

jM = �MeM .
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HMM:	downscaling
2. Weak multiscale formulations: downscaling

Transfer of the macroscale sources terms bM , eM and jM to meso-problems.
Definition of boundary conditions for meso-problems:

I Mesoscale fields involve macroscal sources:

curlx eM + curly ec = curly
⇣
(curlx eM ⇥ y) + ec

⌘
,

bm = curly ac + bM ,

I The two-scale convergence theory leads the periodic boundary conditions:

1
|⌦m|

Z

⌦m

bm dy = bM fulfilled if

I

�m

n ⇥ ac dy = 0.

1
|⌦m|

Z

⌦m

jm dy = jM ()
Z

⌦m

j c dy = 0.
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HMM:	upscaling2. Weak multiscale formulations: upscaling

Computation of the missing macroscale constitutive laws from mesoscale
fields:

The homogenized electric conductivity is derived using the asymptotic
expansion:

(�M)i j =
1

|⌦m|

Z

⌦m

⇣
(�)i j � (�)i k

@�j

@yk

⌘
dy ,

where �j is the solution of the cell problemZ

⌦m

⇣
�(grady �j � e j) · grady �

0
j

⌘
dy = 0.

The homogenized magnetic constitutive law is derived using the two-scale
convergence

HM(bM + bc) =
1

|⌦m|

Z

⌦m

H(bM + bc)dy .

Computation of the tangent

@HM

@bM
=

1
|⌦m|

Z

⌦m

⇣ @H
@bM

+
@H
@bc

@Bc

@bM

⌘
dy .

@Bc

@bM
is computed numerically using finite di↵erences!!!.

Computed	using	finite	differences
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HMM:	pseudo-code

Algorithm 1 Pseudocode of the FE-HMM method for the MQS problem

begin
t  t0, initialize the macroscale field aM|t0 = aM0,
# begin the macroscale time loop (index k)
for (k  1 to NTS) do

# begin the macroscale NR loop (index j)
for (i  1 to NM

NR) do
# parallel resolution of mesoscale problems (index i)
for (i  1 to NGP) do

downscale the sources,
solve Nmeso meso-problems per Gauß point on [t, t +�tM],

compute the homogenized law H
(i)
M and @H(i)

M/@b(i)
M ,

upscale the homogenized law H
(i)
M and @H(i)

M/@b(i)
M ,

end
assemble the matrix and the RHS and solve,

end
end

end
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HMM:	an	exampleApplications: geometry and material laws

Macro-geometry (reference) Macro-mesh (macroscale)

Field lines az Mesoscale mesh
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Recovery	of	local	fields
SMC - hysteretic case: local fields
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Recovery	of	global	engineering	quantities
SMC - hysteretic case: Joule losses
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Similar	ideas	for	multiple	time	scales
Waveform relaxation: coupling 2 subsystems in time domain

One-way coupling/parameter extraction
Strong coupling

Weak coupling Dynamic iteration/waveform relaxation
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Similar	ideas	for	multiple	time	scalesWaveform relaxation method for the multiscale MQS problem: results
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Conclusion

• Engineering	 strategy	for	multiscale magnetoquasistatics
• Solid	mathematical	foundation,	even	for	strongly	nonlinear	
problems

• Embarrassingly	parallel	computations
• But	still	continuum	models	at	both	scales

• My	main	question	for	you	today:	are	there	engineering	
electromagnetic	problems	where	a	strong	coupling	between	
atomic	scales	and	meso/macro	 scales	is	useful?
• In	nano/micro	systems?	optics/imaging?	bio?	


