

Copernicus Land Service Data At Work in the Wind Energy Sector

Morten Lybech Thøgersen, mlt@emd.dk EMD – Wind R&D

Copernicus Global Land User Conference @ Météo-France, Toulouse, October 23-25th 2018

This Presentation

1. Introduction

- EMD and our activities
- Wind energy and the need for accurate geo-data

2. Models – The Model Chain

- Mesoscale and downscaling
- Microscale

3. Land-Surface Data with Cases/Applications

- Maps
- Forests
- Roughness
- Elevations

1. Introduction – EMD

An independent software and consulting company, operating worldwide with many cooperation partners

1. Introduction – EMD Activities

Software

- Development and sale of windPRO software for design and planning of wind farm projects.
- Development and sale of windOPS web-based software service for online production surveillance of existing turbines.
- Development and sale of energyPRO software or technoeconomic analysis and optimization of cogeneration / trigeneration projects.
- Development of customer-made energyTRADE software solutions for optimal daily production planning at co- and trigeneration plants based on forecast data.
- Software training courses worldwide.

Research & Development

Participation in energy research projects funded by the Danish government and different EU institutions.

Consultancy Services

Worldwide consultancy services within wind energy and other types of renewable energy projects.

EMD International A/S

www.emd.dk

1. Introdution - EMD Customers

1. Introduction EMD - windPRO Software

The windPRO software fulfills all demands in for project design and planning of new wind farms

Developed by EMD International A/S since 1992

The software package is used by over 2,400 companies and institutions worldwide in more than 90 countries, including all leading manufacturers, utilities, developers and consultants.

1. Introduction - windPRO

X

windPRO 3.2 SP3 - [StorRotliden_20171107.w32p]

1. Introduction – Accurate prediction is crucial!

 $\pm 5\%$ difference in wind prediction can decide if to develop the site or not The accuracy of wind maps are often less than $\pm 20\%$.

Thus, uncalibrated wind resource maps are just rough (but useful) guides to locate sites

-> Detailed studies - possibly with a tall (100m+) meteorological tower - are a must!

2. Models – Siting

Siting –

Where to look for sites?

Five major conditions have to be fulfilled:

- 1. Wind resource & economical feasibility
- 2. Acceptable climatic conditions
- 3. No major environmental or neighbour conflicts
- 4. Acceptable infrastructure
- 5. Cooperating landowner

2. Models – Micro Siting

Micro Siting –

How to place the turbines? Where to place a meteorological tower?

Five major conditions have to be fulfilled:

- 1. Wind resource & economical feasibility
- 2. Acceptable climatic conditions
- 3. No major environmental or neighbour conflicts
- 4. Acceptable infrastructure
- 5. Cooperating landowner

2. Models – The Model Chain

Temporal resolution: 1 hour

Typical model scales: ~10 m's

2. Models, Data for Mesoscale & Microscale

INNOWIND PROJECT – WWW.INNOWIND.DK Innovation for global wind energy exploitation on land using satellites

We are committed to bring modern-era satellite data into the wind-energy modelling chain. That is to:

Develop novel algorithms to derive aerodynamic surface properties from Copernicus data Integrate satellite-based map layers seamlessly in flow models operated by industry end-users Document the impact of new satellite-based map layers for wind resource assessment

> IMAGE SHOWING Copernuicus LC-100m land use model – location in Africa

2. Mesoscale Model – Lookup Tables

and	use index	ALBEDO	SLMO	SFEM	SFZ0	THERIN	SFHC	definition
	1	15	0.10	0.88	80	3	18.9	'Urban and Built-Up Land'
	2	17	0.30	0.985	15	4	25.0	'Dryland Cropland and Pasture'
	3	18	0.50	0.985	10	4	25.0	'Irrigated Cropland and Pasture'
	4	18	0.25	0.985	15	4	25.0	'Mixed Dryland/Irrigated Cropland and Pastu
	5	18	0.25	0.98	14	4	25.0	'Cropland/Grassland Mosaic'
	6	16	0.35	0.985	20	4	25.0	'Cropland/Woodland Mosaic'
	7	19	0.15	0.96	12	3	20.8	'Grassland'
	8	22	0.10	0.93	5	3	20.8	'Shrubland'
	9	20	0.15	0.95	6	3	20.8	'Mixed Shrubland/Grassland'

Reference (lookup table): Esteve, 2015.

2. Microscale Model – Classification

50+ Reanalysis and Remote Sensing Datasets in windPRO:

Digital elevation data [11]
Roughness data [8]
Digital maps / satellite imagery [8]
Wind data [19 -20]
Wind turbine databases – turbine-locations and turbine-catalogue [4]
Forest data [1]

2. Models and Data (2)

3. Applications & Cases – Maps

EMD International A/S www.emd.dk

3. Applications & Cases – Maps

3. Applications & Cases – Roughness Class

Corine 2012 as Roughness Map Input: http://help.emd.dk/mediawiki/index.php?title=Corine_2012

3. Applications & Cases – Roughness Class

Copernicus Global Land Cover Classification – 100m http://help.emd.dk/mediawiki/index.php?title=CGLS-LC100m

3. Applications & Cases – Roughness

Copernicus Global Land Cover Classification – 100m http://help.emd.dk/mediawiki/index.php?title=CGLS-LC100m

3. Applications & Cases – Forests

	Forest Height (H)			
n	Coniferous	Deciduous		
Displacement Height (Z_d)	0.66 <i>H</i>	0.70 <i>·H</i>		
Roughness Length (z_0)	$z_0 = 0.3 \cdot (H - Z_d)$			
Roughness Length (<i>z</i> ₀)	$z_0 = \begin{cases} 0.1 H \text{ for } h > 2.5m \\ 0.1 \text{ for } h < 2.5m \\ 0.0001 \text{ for water areas} \end{cases}$			

$$w(z) = v_* \frac{1}{\kappa} \ln \left[\frac{z - d}{z_0} \right]$$

EMD International A/S www.emd.dk

Applications & Cases – Forests

Global model ~ 250m

SE SLU Forest Model ~ 25m

Local LIDAR scan (point cloud) ~ 10m

EMD International A/S www.emd.dk

Applications & Cases – Forests

3. Applications & Cases – DEM

DHM1-MLT	AW3D30		
SRTM3	ViewFinder		
SRTM1	DHM10-MLT		
EU-DEM			

3. Applications & Cases – DEM

Thank You!

Copernicus Land Service Data At Work in the Wind Energy Sector

Morten Lybech Thøgersen, mlt@emd.dk EMD – Wind R&D

Copernicus Global Land User Conference @ Météo-France, Toulouse, October 23-25th 2018

