
Numerical methods for optimal transport and

moment measures

Quentin Mérigot
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Several problems in geometry lead to equations of the form

g(∇u)) det(D2u) = a(u), (1)

where g : Rd → R is a probability density and a : R → R decays sufficiently fast at infinity.
For a(t) = exp(−t) this equation is related to the moment measure problem studied in [1, 3],
while for a(t) = t−d+2 this equation appears in the construction of (d − 1)-dimensional affine
hemispheres in convex geometry [2] or in the construction of Stein kernel (see Max Fathi talk on
Wednesday) . As in optimal transport, one can define a Brenier solution to (1) as a convex function
u : Rd → R ∪ {+∞} which satisfies ∇u#a(u) = µ, where µ is the measure on R with density g.
When a(t) = exp(−t) or a(t) = t−d+2, Brenier solutions to (1) maximize a concave functional
similar to the one appearing in Kantorovich duality. We will show that this leads to efficient
numerical methods when the measure µ is finitely supported. In the moment measure case, we
will deduce the convergence of a Newton algorithm from a discrete version of the Brascamp-Lieb
inequality.
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